USE THIS SEARCH BOX AND GET MORE QUESTIONS UPDATES

Saturday, February 6, 2016

Inequalities with logarithmic functions

Log 0 is not defined also log is for positive numbers. So we have to keep these two things in mind to solve these questions.

1. log643xx+1>13
1) -4>x
(2) -4>x and x>-1
(3) -4<x<-1
(4)1<x<4
(5) x4 and x4
Ans:
log643xx+1>13
3xx+1<6413
3xx+1<4
3xx+14<0
x4x+1<0
x+4x+1>0

x(,4)(1,)
Hence option 2.

2. log0.4(x213.5)1
(1)4x4 
(2) x5
(3) x0 
(4) x5andx2
(5) x4andx4
Ans:
log0.4(x213.5)1
x213.50.4(1)
x213.52.5
x2160
(x+4)(x4)0
x4 and x4
Hence option 5.

3. log(x236)log(4x11)
(1)4x6.11916 
(2) x<-6
(3) 6<x<7.38
(4) x>6
(5) None of these
Ans:
log(x236)log(4x11)
log(x236)log(4x11)0
log(x2364x11)0
x2364x111
x2364x1110
x2364x+114x110
x24x254x110
(x(229))(x(2+29))4x110
x(,229)(114,2+29)
We also know that x2360 and 4x11>0
x(,6)(6,) and x>114
Combining all conditions we get,
x(6,2+29)
Hence option 3.

4. 9x10.3x+90
(1) 1<x<2
(2) 1<x<9
(3) 0x2
(4) 2x9
(5) None of these
Ans:
9x10.3x+90
Let 3x=a
a210a+90
a[1,9]
x[0,2]
Hence option 3.

5.  logx((8.5x52)3)>2
(1) 13<x<52
(2) 13<x<52
(3) 52<x<13
(4) 0<x<13
(5) None of these
Ans:
logx(8.5x523)>2
Case 1 : x1
(8.5x52)3>x2
8.5x52>3x2
6x2+17x5>0
(2x-5)(-3x+1)>0
(2x-5)(3x-1)<0
x(13,52)
x[1,52)

Case 2 : 0 < x < 1
(8.5x52)3<x2
(2x5)(3x1)>0
x(0,13)
x(0,13)(1,52)
Hence option 5.

No comments:

Post a Comment