USE THIS SEARCH BOX AND GET MORE QUESTIONS UPDATES

Sunday, February 7, 2016

Inequalities with modulus function

You must commit to memory these thumb rules before you solve the questions.  If |f(x) | <  k, we get two equations f(x) < k and f(x) > - k
Take an example |x28x|<9
If x28x is positive, then |x28x|=x28x
We get x28x<9
If  |x28x| is negative then |x28x|=(x28x)
We get (x28x)<9x28x>9
Therefore we get two equations x28x<9 and x28x > - 9

1. |x28x|<9
1. -1  x < 9
2. x(1,47)(4+7,9)
3. x(147)(4,9)
4. x(1,47)(4+7,9)
5. 1x9
Ans:
From the above discussion,
If x28x is positive, then |x28x|=x28x
and |x28x| is negative then |x28x|=(x28x)
x28x<9 ------(1)
and (x28x)<9x28x>9 -------(2)
From (1) (x+1)(x9)<01<x<9 ------(3)
From (2) x28x+9>0
Using, b±b24ac2a=8±(8)24.1.92.1=4±7
We know that for f(x)> 0, x should not lie in the roots.
x<47 or x>4+7 ---------(4)
From (3) and (4), we get
x(1,47)(4+7,9)
Hence option 2

2. |x212x|<45
1. 15x3
2. 15x3
3. 15<x<3
4. 15<x<3
5. 15x<3
Ans:
|x212x|<45
We have x212x<45 and x212x>45
 x212x45<0  --------- (1)and x212x+45>0 ------(2)
Solving the first equation,
(x15)(x+3)<0
3<x<15 ---------(3)
For second equation, b24ac=(12)24.1.45=144180=36<0
So no real solution exist.
So only 3<x<15 holds good.
Option 4.

3. |x25x|<4x
(1) x < 9
(2) 15<x-3
(3)  1 < x < 9
(4) x>1
(5) -9<x<-1
Ans: |x25x|<4x
x25x<4x and x25x>4x
x25x4x<0 and x25x+4x>0
x(x9)<0 and x(x1)>0
For x(x9)<0 we have x(0,9)
For x(x1)>0 we have x < 0 and x > 1
Taking the common region from above we get 1<x<9
Hence Option 3

4. |x2+12x|<16x
(1) -28<x<4
(2) 0<x<4
(3) 4<x<28
(4) -28<x<-4
ANS :
|x2+12x|<16x
x2+12x<16x and x2+12x>16x
x2+12x16x<0 and x2+12x+16x>0
x(x4)<0 and x(x+28)>0
For x(x4)<0 we have x(0,4)
For x(x+28)>0 we have x(,28)(0,)
Taking the common region from above we get 0<x<4.
Hence option 2


5.  |x2+7x+14|<4x+14
(1) -3<x<7
(2) -7<X<11
(3) -3<x<0
(4) -4<x<3
(5) -7<x<-3
Ans:
|x2+7x+14|<4x+14
x2+7x+14<4x+14 and x2+7x+14>(4x+14)
x2+7x4x<0 and x2+7x+14>4x14
x(x+3)<0 and x2+11x+28>0
x(x+3)<0 and (x+7)(x+4)>0
For x(x+3)<0 we have x(3,0)
For (x+7)(x+4)>0 we have x(,7)(4,)
So, we have, -3<x<0
Hence option 3

6. x214x+42<|2x22|
(1) x<10
(2) x<8
(3) 2<x<10
(4) 2<x<8
(5) 0<x<8
Ans:
If (2x - 22) > 0 then |2x22| = 2x - 22
If (2x - 22) < 0 then |2x22| = - (2x - 22)
So we have x214x+42<2x22 and x214x+42>(2x22)
x214x2x+42+22<0 and x214x+42+2x22<0
x216x+64<0 and x212x+20<0
(x8)(x8)<0 and (x2)(x10)<0
(x8)2can’t be less than 0 for real values of x.
For (x-2)(x-10)<0 we havex(2,10)
Note that here we have to take union of the two sets of solutions and not intersection.
Hence option 3

No comments:

Post a Comment