Note: While solving fuctional equations, Remember the following:
f(xy) = f(x).f(y) f(x) =
f(x+y) = f(x) . f(y) f(x) =
f(xy) = f(x) + f(y) f(x) = K log x or f(x) = 0
f(x+y) = f(x) = f(y) f(x) = k
f(x). = f(x) + f(x) =
1. Given f(x) is a function satisfying f(x+y) = f(x).f(y) for all real values of x and y. If f(1) = 3 and f(1) + f(2) + f(3) + ...f(n) = 1092. Then find the vallue of n.
a. 5 b. 6 c. 7 d. 18
Sol: f(1) = 3
f(2) = f(1 + 1) = f(1) x f(1) =
f(3) = f(1 + 2) = f(1) x f(2) =
...
...
f(1) + f(2) +....f(n) = 1092
=1092
ie.,
Solving n = 6
2. Given g(x) is a function such that g(x+1) + g(x-1) = g(x). For what minimum value of P does the relation g(x+p) = -g(x) necessarily hold true?
a. 2 b. 3 c. 5 d. 6
Sol: given g(x+1) + g(x-1) = g(x) ......(1)
g(x + 2) + g(x) = g(x+1) .........(2)
adding
g(x+2) + g(x-1) = 0
g(x+3) + g(x) = 0
So g(x+3) = - g(x)
P =3
3. The odd function f(x) has period 6. If f(5) = 4 then what is the value of f(1)-f(3)
a. -6 b. -4 c. 0 d. 4
Sol: f(-x) = -f(x)
f(x+6) = f(x)
f(-5) = -f(5) = -4
f(-5) = f(-5+6) = f(1) = -4
f(-3) = f(-3 +6) = f(3)
Also f(-3) = -f(3) So f(3) = 0
4.F(x) = Then is equal to
F(x) + F(1-x) =
= = 998
5. If f(x/y) = f(x) - f(y) (for y0) then which of these is equal in value to f(150/6)
a. f(5) b. 2.f(5) c. f(6) d. f(20)
Sol: f(x/y) = f(x).f(y)
Put x = y f(1) = 0
Put x = 1 y = 1/x
f(x) = f(1) - f(1/x) = 0 - f(1/x)
f(1/x) = -f(x)
Put x = x and y = 1/x
=f(x) - f(1/x)
f(x) - (-f(x) = 2f(x)
=2.f(x)
f(25) = 2.f(5)
Alternatively:
When you see f(x/y) = f(x) - f(y) you should recall that it is of the form Log (a/b) = log a - log b
So the given function is a logarithmic function.
So log (150/6) = log (25) = log () = 2log5
f(xy) = f(x).f(y) f(x) =
f(x+y) = f(x) . f(y) f(x) =
f(xy) = f(x) + f(y) f(x) = K log x or f(x) = 0
f(x+y) = f(x) = f(y) f(x) = k
f(x). = f(x) + f(x) =
1. Given f(x) is a function satisfying f(x+y) = f(x).f(y) for all real values of x and y. If f(1) = 3 and f(1) + f(2) + f(3) + ...f(n) = 1092. Then find the vallue of n.
a. 5 b. 6 c. 7 d. 18
Sol: f(1) = 3
f(2) = f(1 + 1) = f(1) x f(1) =
f(3) = f(1 + 2) = f(1) x f(2) =
...
...
f(1) + f(2) +....f(n) = 1092
=1092
ie.,
Solving n = 6
2. Given g(x) is a function such that g(x+1) + g(x-1) = g(x). For what minimum value of P does the relation g(x+p) = -g(x) necessarily hold true?
a. 2 b. 3 c. 5 d. 6
Sol: given g(x+1) + g(x-1) = g(x) ......(1)
g(x + 2) + g(x) = g(x+1) .........(2)
adding
g(x+2) + g(x-1) = 0
g(x+3) + g(x) = 0
So g(x+3) = - g(x)
P =3
3. The odd function f(x) has period 6. If f(5) = 4 then what is the value of f(1)-f(3)
a. -6 b. -4 c. 0 d. 4
Sol: f(-x) = -f(x)
f(x+6) = f(x)
f(-5) = -f(5) = -4
f(-5) = f(-5+6) = f(1) = -4
f(-3) = f(-3 +6) = f(3)
Also f(-3) = -f(3) So f(3) = 0
4.F(x) = Then is equal to
F(x) + F(1-x) =
= = 998
5. If f(x/y) = f(x) - f(y) (for y0) then which of these is equal in value to f(150/6)
a. f(5) b. 2.f(5) c. f(6) d. f(20)
Sol: f(x/y) = f(x).f(y)
Put x = y f(1) = 0
Put x = 1 y = 1/x
f(x) = f(1) - f(1/x) = 0 - f(1/x)
f(1/x) = -f(x)
Put x = x and y = 1/x
=f(x) - f(1/x)
f(x) - (-f(x) = 2f(x)
=2.f(x)
f(25) = 2.f(5)
Alternatively:
When you see f(x/y) = f(x) - f(y) you should recall that it is of the form Log (a/b) = log a - log b
So the given function is a logarithmic function.
So log (150/6) = log (25) = log () = 2log5
No comments:
Post a Comment