USE THIS SEARCH BOX AND GET MORE QUESTIONS UPDATES

Showing posts with label Areas and Mensuration. Show all posts
Showing posts with label Areas and Mensuration. Show all posts

Friday, April 8, 2016

QUANTITATIVE APTITUDE

The largest square that can be inscribed in a right angled triangle ABC when one of its vertices lies on the hypotenuse of the triangle
Solution 1:

From the above diagram,  ΔABC and ΔAFD are similar.
Tanα=ADFD=ABBC
ADx=ab
AD=xab - - - - - (1)
Also, ΔABC and ΔEGC are similar.
Tanα=GEEC=ab
xEC=ab
EC=xba - - - - - (2)
We know that c= AD + x + EC
c=xab+x+xba
c=x(ab+1+ba)
c=x(a2+ab+b2ab)
x=(abca2+ab+b2)
Side of the square = abca2+b2+ab

Solution 2:

From the above diagram, drop a perpendicular to AC from vertex B. 
Area of ΔABC = 12×a×b=12×BF×c
BF=abc - - - - - (1)
Now ΔBDE and ΔABC are similar. 
BGBF=DEAC
abcxabc=xc
1xcab=xc
1=xcab+xc
1=x(cab+1c)
1=x(c2+ababc)
x=abcc2+ab =