USE THIS SEARCH BOX AND GET MORE QUESTIONS UPDATES

Friday, April 8, 2016

QUANTITATIVE APTITUDE

The largest square that can be inscribed in a right angled triangle ABC when one of its vertices lies on the hypotenuse of the triangle
Solution 1:

From the above diagram,  ΔABC and ΔAFD are similar.
Tanα=ADFD=ABBC
ADx=ab
AD=xab - - - - - (1)
Also, ΔABC and ΔEGC are similar.
Tanα=GEEC=ab
xEC=ab
EC=xba - - - - - (2)
We know that c= AD + x + EC
c=xab+x+xba
c=x(ab+1+ba)
c=x(a2+ab+b2ab)
x=(abca2+ab+b2)
Side of the square = abca2+b2+ab

Solution 2:

From the above diagram, drop a perpendicular to AC from vertex B. 
Area of ΔABC = 12×a×b=12×BF×c
BF=abc - - - - - (1)
Now ΔBDE and ΔABC are similar. 
BGBF=DEAC
abcxabc=xc
1xcab=xc
1=xcab+xc
1=x(cab+1c)
1=x(c2+ababc)
x=abcc2+ab = 

No comments:

Post a Comment