USE THIS SEARCH BOX AND GET MORE QUESTIONS UPDATES

Friday, February 26, 2016

Slope of a polynomial

Slope is the angle made by a line with x - axis.  We usually say that slope = Tanθ.
To find the slope of a linear equation we use the formula = y2y1x2x1


The graph drawn here is represented by y = 2x-1.  We consider y as a function of x.  So y = f(x) = 2x - 1.
So at point 'a' or x = 0  value of y = -1 and at point 'b' or x = 2 value of y = 3.
So slope is defined as the rate in change in y values over change in x value.
Slope = f(b)f(a)ba = 3(1)20 = 2

But actual way of finding slope of a graph is the ratio of differences of f(x) at two different points on x- axis. say x+h, x where h is almost 0.  This is represented algebrically, Lth0f(x+h)f(x)h

 This is nothing but differentiation.  

So Lth02(x+h)1(2x1)h=2hh=2

So if we take the graph of the slopes at various points on the function f(x) = 2x - 1 it is always 2.

Consider the following graph f(x) = x2+x2. For this function slope cannot be determined uniquely as it changes across the line.  So we can only find slope at a given point x.   The blue line represents the differentiation of the given quadratic equation. It is represented by f1(x) = 2x + 1



We also try to understand the relationship between the graph of the function and the graph of the differentiated function.


You can observe that the quadratic function attains a minimum value when the line of slope (blue line) touches the x- axis.  You can also observe, that the slope of the quadratic function is negative till it becomes zero (observe the blue line ab), and is positive (line bc) after that point. 

We know that f1(x) = 2x + 1 and by equating this function to 0,  we get x = -1/2.  At this point the quadratic function attains its minimum value. 

Consider the graphs of  f(x)=x32x2x+2 and its differentiation f1(x)=3x24x1



You can observe that the slopes of the equation becomes zero two times.  These are called local maxima and minima.  This happens at points a and c.  But we know that a and c are nothing but the roots of the quadratic equation which inturns f1(x) which are 1±73
What about point b.  Why the slope curve changed direction? this point is called inflection.  At this point, the function negative slope is maximum.  After this point, it is still decreasing, but not at the rate it used to be.That is why slope is still negative. 

No comments:

Post a Comment