USE THIS SEARCH BOX AND GET MORE QUESTIONS UPDATES

Saturday, January 30, 2016

Inequalities under square roots

To solve these questions, we have to make sure that the expression within the square root must always be positive.  All the rules related to inequalities apply to these questions. Let us have a look at some solved examples.

1. (x3)(x2)2x150
1.x5
2. x5
3.x8
4.x3
5.x5
Ans:
(x3)(x2)2x150
(x3)(x2)5x+3x150
(x3)(x5)(x+3)0
The above inequality is valid for
x50
That is, x5
Hence option 1

2.  (x8)x23x+400
1.x5
2.x5
3.x8
4.x13
5.x5
Ans:
(x8)(x2)+8x5x400
(x8)(x+8)(x5)0
The above inequality is vallid for
That is, x5
Hence option 2

3. 27x13x>1
(1) 0<x<3
(2) 0.5<x<6
(3) 0.5<x<3
(4) 0<x<6
(5) 1<x<3
Ans:
27x13x>1
7x13x>1
7x13x>1
7x13x1>0
8x43x>0
8x4x3<0
2x1x3<0
The above inequality is negative, when numerator is positive and denominator is negative or numerator is negative and denominator is positive, So 2x - 1 > 0 and x - 3 < 0,  x > 1/2 and x < 3  for 0.5 <x<3 the above inequality is satisfied.
Hence option 2

4.  6x852x>2
(1)0.75<x<25
(2) 0<x<5
(3) 2<x<5
(4) 5<X<11
Ans:
6x852x>22

6x852x>4

6x852x4>0

14x2852x>0

x22x5<0
So, we have,
2<x<2.5
Hence option 5

5. 1(2x1x2)<12
1.23<x<2
2.x>23
3.x>2
4.x<2
5.None of these
Ans:
1(2x1x2)<12
1(2x1)x2<14
x22x+1x2<14
As x2 is positive, we can cross multiply.
4x28x+4<x2
3x28x+4<0
(3x2)(x2)<0
x<2 and x>23
Hence option 4

6. 1(x+3x2)<34
1. 127<x132and 1132x<4
2. x1132
3. x1132
4. 127x4
5. None of these
Ans:
1(x+3x2)<34
1x+3x2<916
x2x3x2<916
16x216x48<9x2
7x216x48<0
7x228x+12x48<0
(7x+12)(x4)<0
7x+12>0andx4<0
x>127andx<4 -------(1)
Also we check the numerator is greater than 0 or not.
x2x30
b±b24ac2a=1±14.1.32=1±1+132
x<11+132 and x>1+1+132 ----- (2)
Combining the above two results we get 127<x132and 1132x<4
Hence option 1

No comments:

Post a Comment