Suppose a man has to pay Rs. 156 after 4 years and the rate of
interest is 14% per annum. Clearly, Rs. 100 at 14% will amount to
Rs. 156 in 4 years. So, the payment of Rs. 100 now will clear off the
debt of Rs. 156 due 4 years hence.
We say that :
Sum due = Rs. 156 due 4 years hence;
Present worth (P.W.) = Rs.100;
True Discount (T.D.) = Rs. (156 - 100) = Rs. 56 = (Sum due) - (P.W.).
We define : T.D. = Interest on P.W.
Amount = (P.W.) + (T.D.).
Interest is reckoned on P.W. and true discount is reckoned on the
amount.
TRUE DISCOUNT -> IMPORTANT FORMULAE
Let rate = R% per annum and Time = T years.
Then,
I. P.W. = 100 * Amount / 100 + (R*T) = 100 * T.D. / R * T
II. T.D. = (P.W.)* R * T / 100 = Amount * R * T / 100 + (R * T)
III. Sum = (S.I.) * (T.D.) / (S.I.) - (T.D.)
IV. (S.I.) - (T.D.) = S.I on T.D.
V.
When the sum is put at compound interest, then P.W. = Amount
/ [1+R/100]T;
No comments:
Post a Comment